Многоканальная смо с ограниченной длиной очереди. Системы массового обслуживания с неограниченной очередью Многоканальная смо с неограниченной очередью pdf

Тема. Теория систем массового обслуживания.

Каждая СМО состоит из какого–то количества обслуживающих единиц, которые называются каналами обслуживания (это станки, транспортные тележки, роботы, линии связи, кассиры, продавцы и т.д.). Всякая СМО предназначена для обслуживания какого–то потока заявок (требований), поступающих в какие-то случайные моменты времени.

Классификация СМО по способу обработки входного потока заявок.

Системы массового обслуживания

С отказами

(без очереди)

С очередью

Неограниченная очередь

Ограниченная очередь

С приоритетом

В порядке поступления

Относительный приоритет

Абсолютный приоритет

По времени обслуживания

По длине очереди

Классификация по способу функционирования:

    открытыми, т.е. поток заявок не зависит от внутреннего состояния СМО;

    закрытыми, т.е. входной поток зависит от состояния СМО (один ремонтный рабочий обслуживает все каналы по мере их выхода из строя).

Многоканальная СМО с ожиданием

Система с ограниченной длиной очереди. Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

- все каналы свободны;

- занят один канал, остальные свободны;

- заняты -каналов, остальные нет;

- заняты все -каналов, свободных нет;

есть очередь:

- заняты все n-каналов; одна заявка стоит в очереди;

- заняты все n-каналов, r-заявок в очереди;

- заняты все n-каналов, r-заявок в очереди.

ГСП приведен на рис. 9. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Рис. 9. Многоканальная СМО с ожиданием

Вероятность отказа.

(29)

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

(30)

Среднее число занятых каналов.

Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

(31)

где .

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (23), (24) - (26)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди.

(32)

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди только множителем , т. е.

.

Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО .

Системы с неограниченной длиной очереди. Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более m-заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятность отказа

Среднее число заявок в очереди получим при из (31):

,

а среднее время ожидания - из (32): .

Среднее число заявок .

Пример 2. Автозаправочная станция с двумя колонками (n = 2) обслуживает поток машин с интенсивностью =0,8 (машин в минуту). Среднее время обслуживания одной машины:

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно. Найти характеристики СМО.

СМО с ограниченным временем ожидания. Ранее рассматривались системы с ожиданием, ограниченным только длиной очереди (числом m-заявок, одновременно находящихся в очереди). В такой СМО заявка, разраставшая в очередь, не покидает ее, пока не дождется обслуживания. На практике встречаются СМО другого типа, в которых заявка, подождав некоторое время, может уйти из очереди (так называемые «нетерпеливые» заявки).

Рассмотрим СМО подобного типа, предполагая, что ограничение времени ожидания является случайной величиной.

Пуассоновский «поток уходов» с интенсивностью:

Если этот поток пуассоновский, то процесс, протекающий в СМО, будет марковским. Найдем для него вероятности состояний. Нумерация состояний системы связывается с числом заявок в системе - как обслуживаемых, так и стоящих в очереди:

нет очереди:

- все каналы свободны;

- занят один канал;

- заняты два канала;

- заняты все n-каналов;

есть очередь:

- заняты все n-каналов, одна заявка стоит в очереди;

- заняты все n-каналов, r-заявок стоят в очереди и т. д.

Граф состояний и переходов системы показан на рис. 10.

Рис. 10. СМО с ограниченным временем ожидания

Разметим этот граф, как и раньше; у всех стрелок, ведущих слева направо, будет стоять интенсивность потока заявок . Для состояний без очереди у стрелок, ведущих из них справа налево, будет, как и раньше, стоять суммарная интенсивность потока обслуживании всех занятых каналов. Что касается состояний с очередью, то у стрелок, ведущих из них справа налево, будет стоять суммарная интенсивность потока обслуживания всех n-каналов плюс соответствующая интенсивность потока уходов из очереди. Если в очереди стоят r-заявок, то суммарная интенсивность потока уходов будет равна .

Среднее число заявок в очереди: (35)

На каждую из этих заявок действует «поток уходов» с интенсивностью . Значит, из среднего числа -заявок в очереди в среднем будет уходить, не дождавшись обслуживания, -заявок в единицу времени и всего в единицу времени в среднем будет обслуживаться -заявок. Относительная пропускная способность СМО будет составлять:

Среднее число занятых каналов по-прежнему получаем, деля абсолютную пропускную способность А на Замкнутые СМО

До сих пор мы рассматривали системы, в которых входящий поток никак не связан с выходящим. Такие системы называются разомкнутыми. В некоторых же случаях обслуженные требования после задержки опять поступают на вход. Такие СМО называются замкнутыми. Поликлиника, обслуживающая данную территорию, бригада рабочих, закрепленная за группой станков, являются примерами замкнутых систем.

В замкнутой СМО циркулирует одно и то же конечное число потенциальных требований. Пока потенциальное требование не реализовалось в качестве требования на обслуживание, считается, что оно находится в блоке задержки. В момент реализации оно поступает в саму систему. Например, рабочие обслуживают группу станков. Каждый станок является потенциальным требованием, превращаясь в реальное в момент своей поломки. Пока станок работает, он находится в блоке задержки, а с момента поломки до момента окончания ремонта - в самой системе. Каждый рабочий является каналом обслуживания. = =P 1 + 2 P 2 +…+(n- 1 )P n- 1 +n( 1 -P На вход трехканальной СМО с отказами поступает поток заявок с интенсивностью =4 заявки в минуту, время обслуживания заявки одним каналом t обсл =1/μ =0,5 мин. Выгодно ли с точки зрения пропускной способности СМО заставить все три канала обслуживать заявки сразу, причем среднее время обслуживания уменьшается втрое? Как это скажется на среднем времени пребывания заявки в СМО?

Пример 2 . /μ=2, ρ/ n =2/3<1.

Задача 3:

Два рабочих обслуживают группу из четырех станков. Остановки работающего станка происходят в среднем через 30 мин. Среднее время наладки составляет 15 мин. Время работы и время наладки распределено по экспоненциальному закону.

Найдите среднюю долю свободного времени для каждого рабочего и среднее время работы станка.

Найдите те же характеристики для системы, в которой:

а) за каждым рабочим закреплены два станка;

б) два рабочих всегда обслуживают станок вместе, причем с двойной интенсивностью;

в) единственный неисправный станок обслуживают оба рабочих сразу (с двойной интенсивностью), а при появлении еще хотя бы одного неисправного станка они начинают работать порознь, причем каждый обслуживает один станок (вначале опишите систему в терминах процессов гибели и рождения).

Рассмотрим простейшую СМО с ожиданием - одноканальную систему , в которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (т. е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок в единицу (времени). Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Система с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом , т. е. если заявка пришла в момент, когда в очереди уже стоят заявок, она покидает систему необслуженной. В дальнейшем, устремив к бесконечности, мы получим характеристики одноканальной СМО без ограничений длины очереди.

Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):

Канал свободен;

Канал занят, очереди нет;

Канал занят, одна заявка стоит в очереди;

Канал занят, заявок стоят в очереди;

Канал занят, т заявок стоят в очереди.

ГСП показан на рис. 5.8. Все интенсивности потоков событий, переводящих в систему по стрелкам слева направо, равны , а справа налево - . Действительно, по стрелкам слева направо систему переводит поток заявок (как только придет заявка, система переходит в следующее состояние), справа же налево - поток «освобождений» занятого канала, меющий интенсивность (как только будет обслужена очередная заявка, канал либо освободится, либо уменьшится число заявок в очереди).

Рис. 5.8. Одноканальная СМО с ожиданием

Изображенная на рис. 5.8 схема представляет собой схему размножения и гибели. Используя общее решение (5.32)-(5.34), напишем выражения для предельных вероятностей состояний (см. также (5.40)):

или с использованием :

Последняя строка в (5.45) содержит геометрическую прогрессию с первым членом 1 и знаменателем р; откуда получаем:

в связи с чем предельные вероятности принимают вид:

Выражение (5.46) справедливо только при (при она дает неопределенность вида ). Сумма геометрической прогрессии со знаменателем равна , и в этом случае

Определим характеристики СМО: вероятность отказа , относительную пропускную способность , абсолютную пропускную способность , среднюю длину очереди , среднее число заявок, связанных с системой , среднее время ожидания в очереди , среднее время пребывания заявки в СМО

Вероятность отказа. Очевидно, заявка получает отказ только в случае, когда канал занят и все т мест в очереди тоже:

Относительная пропускная способность:

Абсолютная пропускная способность:

Средняя длина очереди. Найдем среднее число заявок, находящихся в очереди, как математическое ожидание дискретной случайной величины - числа заявок, находящихся в очереди:

С вероятностью в очереди стоит одна заявка, с вероятностью - две заявки, вообще с вероятностью в очереди стоят заявок, и т. д., откуда:

Поскольку , сумму в (5.50) можно трактовать как производную по от суммы геометрической прогрессии:

Подставляя данное выражение в (5.50) и используя из (5.47), окончательно получаем:

Среднее число заявок, находящихся в системе. Получим далее формулу для среднего числа заявок, связанных с системой (как стоящих в очереди, так и находящихся на обслуживании). Поскольку , где - среднее число заявок, находящихся под обслуживанием, а известно, то остается определить . Поскольку канал один, число обслуживаемых заявок может равняться (с вероятностью ) или 1 (с вероятностью ), откуда:

и среднее число заявок, связанных с СМО, равно

Среднее время ожидания заявки в очереди. Обозначим его ; если заявка приходит в систему в какой-то момент времени, то с вероятностью канал обслуживания не будет занят, и ей не придется стоять в очереди (время ожидания равно нулю). С вероятностью она придет в систему во время обслуживания какой-то заявки, но перед ней не будет очереди, и заявка будет ждать начала своего обслуживания в течение времени (среднее время обслуживания одной заявки). С вероятностью в очереди перед рассматриваемой заявкой будет стоять еще одна, и время ожидания в среднем будет равно , и т. д.

Если же , т. е. когда вновь приходящая заявка застает канал обслуживания занятым и заявок в очереди (вероятность этого ), то в этом случае заявка не становится в очередь (и не обслуживается), поэтому время ожидания равно нулю. Среднее время ожидания будет равно:

если подставить сюда выражения для вероятностей (5.47), получим:

Здесь использованы соотношения (5.50), (5.51) (производная геометрической прогрессии), а также из (5.47). Сравнивая это выражение с (5.51), замечаем, что иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Среднее время пребывания заявки в системе. Обозначим матожидание случайной величины - время пребывания заявки в СМО, которое складывается из среднего времени ожидания в очереди и среднего времени обслуживания . Если загрузка системы составляет 100 %, очевидно, , в противном же случае

Пример 5.6. Автозаправочная станция (АЗС) представляет собой СМО с одним каналом обслуживания (одной колонкой).

Площадка при станции допускает пребывание в очереди на заправку не более трех машин одновременно . Если в очереди уже находятся три машины, очередная машина, прибывшая к станции, в очередь не становится. Поток машин, прибывающих для заправки, имеет интенсивность (машина в минуту). Процесс заправки продолжается в среднем 1,25 мин.

Определить:

вероятность отказа;

относительную и абсолютную пропускную способности АЗС;

среднее число машин, ожидающих заправки;

среднее число машин, находящихся на АЗС (включая обслуживаемую);

среднее время ожидания машины в очереди;

среднее время пребывания машины на АЗС (включая обслуживание).

иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Находим вначале приведенную интенсивность потока заявок:

По формулам (5.47):

Вероятность отказа .

Относительная пропускная способность СМО

Абсолютная пропускная способность СМО

Машины в мин.

Среднее число машин в очереди находим по формуле (5.51)

т. е. среднее число машин, ожидающих в очереди на заправку, равно 1,56.

Прибавляя к этой величине среднее число машин, находящихся под обслуживанием

получаем среднее число машин, связанных с АЗС.

Среднее время ожидания машины в очереди по формуле (5.54)

Прибавляя к этой величине , получим среднее время, которое машина проводит на АЗС:

Системы с неограниченным ожиданием . В таких системах значение т не ограничено и, следовательно, основные характеристики могут быть получены путем предельного перехода в ранее полученных выражениях (5.44), (5.45) и т. п.

Заметим, что при этом знаменатель в последней формуле (5.45) представляет собой сумму бесконечного числа членов геометрической прогрессии. Эта сумма сходится, когда прогрессия бесконечно убывающая, т. е. при .

Может быть доказано, что есть условие, при котором в СМО с ожиданием существует предельный установившийся режим, иначе такого режима не существует, и очередь при будет неограниченно возрастать. Поэтому в дальнейшем здесь предполагается, что .

Если , то соотношения (5.47) принимают вид:

При отсутствии ограничений по длине очереди каждая заявка, пришедшая в систему, будет обслужена, поэтому ,

Среднее число заявок в очереди получим из (5.51) при :

Среднее число заявок в системе по формуле (5.52) при

Среднее время ожидания получим из формулы

(5.53) при :

Наконец, среднее время пребывания заявки в СМО есть

Многоканальная СМО с ожиданием

Система с ограниченной длиной очереди . Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди .

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

Все каналы свободны;

Занят один канал, остальные свободны;

Заняты каналов, остальные нет;

Заняты все каналов, свободных нет;

есть очередь:

Заняты все n каналов; одна заявка стоит в очереди;

Заняты все n каналов, r заявок в очереди;

Заняты все n каналов, r заявок в очереди.

ГСП приведен на рис. 5.9. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Рис. 5.9. Многоканальная СМО с ожиданием

Граф типичен для процессов размножения и гибели, для которой решение ранее получено (5.29)-(5.33). Напишем выражения для предельных вероятностей состояний, используя обозначение : (здесь используется выражение для суммы геометрической прогрессии со знаменателем ).

Таким образом, все вероятности состояний найдены.

Определим характеристики эффективности системы.

Вероятность отказа. Поступившая заявка получает отказ, если заняты все каналов и все мест в очереди:

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

Среднее число занятых каналов. Для СМО с отказами оно совпадало со средним числом заявок, находящихся в системе. Для СМО с очередью среднее число занятых каналов не совпадает со средним числом заявок, находящихся в системе: последняя величина отличается от первой на среднее число заявок, находящихся в очереди.

Обозначим среднее число занятых каналов . Каждый занятый канал обслуживает в среднем заявок в единицу времени, а СМО в целом обслуживает в среднем заявок в единицу времени. Разделив одно на другое, получим:

Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (5.50), (5.51)-(5.53)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди. Рассмотрим ряд ситуаций, различающихся тем, в каком состоянии застанет систему вновь пришедшая заявка и сколько времени ей придется ждать обслуживания.

Если заявка застанет не все каналы занятыми, ей вообще не придется ждать (соответствующие члены в математическом ожидании равны нулю). Если заявка придет в момент, когда заняты все каналов, а очереди нет, ей придется ждать в среднем время, равное (потому что «поток освобождений» каналов имеет интенсивность ). Если заявка застанет все каналы занятыми и одну заявку перед собой в очереди, ей придется в среднем ждать в течение времени (по на каждую впереди стоящую заявку) и т. д. Если заявка застанет в очереди заявок, ей придется ждать в среднем в течение времени . Если вновь пришедшая заявка застанет в очереди уже заявок, то она вообще не будет ждать (но и не будет обслужена). Среднее время ожидания найдем, умножая каждое из этих значений на соответствующие вероятности:

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди (5.59) только множителем , т. е.

Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО, отличается от среднего времени ожидания на среднее время обслуживания, умноженное на относительную пропускную способность:

Системы с неограниченной длиной очереди . Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятности состояний получим из формул (5.56) предельным переходом (при ). Заметим, что сумма соответствующей геометрической прогрессии сходится при и расходится при . Допустив, что и устремив в формулах (5.56) величину m к бесконечности, получим выражения для предельных вероятностей состояний:

Вероятность отказа, относительная и абсолютная пропускная способность. Так как каждая заявка рано или поздно будет обслужена, то характеристики пропускной способности СМО составят:

Среднее число заявок в очереди получим при из (5.59):

а среднее время ожидания - из (5.60):

Среднее число занятых каналов , как и ранее, определяется через абсолютную пропускную способность:

Среднее число заявок, связанных с СМО, определяется как среднее число заявок в очереди плюс среднее число заявок, находящихся под обслуживанием (среднее число занятых каналов):

Пример 5.7. Автозаправочная станция с двумя колонками () обслуживает поток машин с интенсивностью (машин в минуту). Среднее время обслуживания одной машины

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно. Найти характеристики СМО.

Поскольку , очередь не растет безгранично и имеет смысл говорить о предельном стационарном режиме работы СМО. По формулам (5.61) находим вероятности состояний:

Среднее число занятых каналов найдем, разделив абсолютную пропускную способность СМО на интенсивность обслуживания :

Вероятность отсутствия очереди у АЗС будет:

Среднее число машин в очереди:

Среднее число машин на АЗС:

Среднее время ожидания в очереди:

Среднее время пребывания машины на АЗС:

СМО с ограниченным временем ожидания. Ранее рассматривались системы с ожиданием, ограниченным только длиной очереди (числом заявок, одновременно находящихся в очереди). В такой СМО заявка, раз ставшая в очередь, не покидает ее, пока не дождется обслуживания. На практике встречаются СМО другого типа, в которых заявка, подождав некоторое время, может уйти из очереди (так называемые «нетерпеливые» заявки).

Рассмотрим СМО подобного типа, предполагая, что ограничение времени ожидания является случайной величиной.

Предположим, что имеется канальная СМО с ожиданием, в которой число мест в очереди не ограничено, но время пребывания заявки в очереди является некоторой случайной величиной со средним значением , таким образом, на каждую заявку, стоящую в очереди, действует своего рода пуассоновский «поток уходов» с интенсивностью заявок стоят в очереди и т. д.

Граф состояний и переходов системы показан на рис. 5.10.

Рис. 5.10. СМО с ограниченным временем ожидания

Разметим этот граф, как и раньше; у всех стрелок, ведущих слева направо, будет стоять интенсивность потока заявок . Для состояний без очереди у стрелок, ведущих из них справа налево, будет, как и раньше, стоять суммарная интенсивность потока обслуживании всех занятых каналов. Что касается состояний с очередью, то у стрелок, ведущих из них справа налево, будет стоять суммарная интенсивность потока обслуживании всех каналов плюс соответствующая интенсивность потока уходов из очереди. Если в очереди стоят заявок, то суммарная интенсивность потока уходов будет равна .

Как видно из графа, имеет место схема размножения и гибели; применяя общие выражения для предельных вероятностей состояний в этой схеме (используя сокращенные обозначения ) запишем:

Отметим некоторые особенности СМО с ограниченным ожиданием сравнительно с ранее рассмотренными СМО с «терпеливыми» заявками.

Если длина очереди не ограничена и заявки «терпеливы» (не уходят из очереди), то стационарный предельный режим существует только в случае (при соответствующая бесконечная геометрическая прогрессия расходится, что физически соответствует неограниченному росту очереди при ).

Напротив, в СМО с «нетерпеливыми» заявками, уходящими рано или поздно из очереди, установившийся режим обслуживания при достигается всегда, независимо от приведенной интенсивности потока заявок, не суммируя бесконечного ряда (5.63). Из (5.64) получаем:

а входящее в эту формулу среднее число занятых каналов можно найти как математическое ожидание случайной величины , принимающей значения с вероятностями :

В заключение заметим, что если в формулах (5.62) перейти к пределу при (или, что то же, при ), то при получатся формулы (5.61), т. е. «нетерпеливые» заявки станут «терпеливыми».

Имеется n-канальная СМО с неограниченной очередью. Она характеризуется следующими показателями :

Предельные вероятности:

, , . . . , , ,…, ,… (10)

Вероятность того, что заявка окажется в очереди:

(11)

(13)

Среднее время нахождения в очереди:

(15)

Среднее время нахождения заявки в очереди:

Рассмотрим пример решения задачи многоканальной СМО с ожиданием.

Задача . В магазине к кассам поступает поток покупателей с интенсивностью 81 человек в час. Средняя продолжительность обслуживания кассиром одного покупателя tобсл = 2 мин. Определить предельные вероятности состояний и характеристики обслуживания узла расчета.

По условию λ=81(чел./час)= 81/60=1,35 (чел./мин.). По формулам (1, 2):

= λ/μ= λ * tобсл = 1,35 * 2 = 2,7

<1, т.е. при n > = 2,7. Таким образом, минимальное количество кассиров n =3.

Найдем характеристики обслуживания СМО при n=3.

Вероятность того, что в кассах отсутствуют покупатели, по формуле (9):

= (1+2,7+2,7 /2!+2,7 /3!+2,7 /3!(3-2,7)) = 0,025

В среднем 2,5 % времени кассиры будут простаивать.

Вероятность того, что в кассах будет очередь, определим по формуле (11):

P = (2,7 /3!(3-2,7))0,025 = 0,735

Среднее число покупателей, находящихся в очереди рассчитывается по формуле (13):

L = (2,7 /(3*3!(1-2,7/3) ))*0,025 = 7,35 (чел.)

T =7,35/1,35 = 5,44 (мин.)

Определим среднее число покупателей в кассах по формуле (15):

L =7,35+2,7=10,05 (чел.)

Среднее время нахождения покупателей в кассах находится по формуле (16):

T =10,05/1,35=7,44 (мин)

Среднее число кассиров, занятых обслуживанием покупателей, по формуле (12) =2,7.

Коэффициент (доля) занятых обслуживанием кассиров вычисляется по следующей формуле:

Абсолютная пропускная способность узла расчета A=1,35 (чел./мин), или 81 (чел./час), т.е. 81 покупатель в час. Анализ характеристик обслуживания свидетельствует о значительной перегрузке касс при наличии трех кассиров.

Системы массового обслуживания с ограниченной очередью

Имеется n-канальная СМО с ограниченной очередью. Число заявок в очереди ограничено числом m. Если заявка поступает в момент, когда в очереди уже m заявок, она не обслуживается. Такая СМО характеризуется следующими показателями :

Предельные вероятности:

(17)

, , . . . , , ,…, (18)

Вероятность отказа:

(19)

Относительная пропускная способность:

Абсолютная пропускная способность:

Среднее число занятых каналов:

Среднее число заявок в очереди:

(23)

Среднее число заявок в системе:

Пример оптимизации СМО

Показатели работы системы массового обслуживания могут использоваться для решения оптимизационных задач.

Задача.

Определить оптимальное количество причалов в порту с минимальными затратами, если известно, что за год было обслужено 270 судов. Разгрузка одного судна длится в среднем 12 часов. Пеня за простой судна в порту составляет 100 тыс.р./сут.. Затраты на причал 150 тыс.р./сут. Расчеты приведены в таблице.

Решение.

По условию

λ=270(судов/год)=270/360=0,75(судов/сут.),

tобсл=12ч=12/24=0,5 сут.

По формулам (1, 2):

= λ/μ= λ * tобсл = 0,75 * 0,5 = 1,5

Очередь не будет возрастать до бесконечности при условии /n <1, т.е. при n > = 1,5. Таким образом, минимальное количество причалов n =2.

Найдем характеристики обслуживания СМО порта при количестве причалов n=2.

Вероятность того, что в порту отсутствуют суда, вычислим по формуле (9):

В среднем 1,4 % времени причалы будут простаивать.

Среднее число судов, находящихся в очереди рассчитывается по формуле (13):

Среднее время ожидания в очереди вычисляется по формуле (14):

T =1,93/0,75 = 2,57 (сут.)

Определим среднее число судов в порту по формуле (15):

L =1,93+1,5=3,43 (судна)

Среднее время нахождения судов в порту находится по формуле (16):

T =3,43 /0,75 =4,57 (сут)

Среднее число занятых причалов (12) =1,5.

Анализ характеристик обслуживания свидетельствует о значительной перегрузке порта при наличии двух причалов.

Найдем суммарную пеню за простой судов в порту в сутки. Для этого перемножим пеню за простой судна в порту и среднее число судов в очереди:

= * L .

Определим затраты по обслуживанию причалов в сутки: = *n.

Для двух причалов в сутки

Суммарные затраты составят: С= + =193+300=493(ден.ед.)

Суммарные затраты по условию задачи должны быть минимальны.

Рассчитаем суммарные затраты для количества причалов n = 2, 3, 4. Расчеты приведены в таблице. Как видно из таблицы, минимальные затраты достигаются при n = 3. Следовательно, для минимизации затрат необходимо 3 причала.

Таблица 1.- Расчет оптимального числа причалов

Показатель Количество причалов
Интенсивность потока судов 0,75 0,75 0,75
Интенсивность обслуживания судов 0,5 0,5 0,5
Интенсивность нагрузки причала 1,5 1,5 1,5
Вероятность, что все причалы свободны 0,14 0,21 0,22
Среднее число судов в очереди 1,93 0,24 0,04
Среднее время пребывания судна в очереди, сут. 2,57 0,32 0,06
Среднее число судов в порту 3,43 1,74 1,54
Среднее время пребывания судна в порту, сут 4,57 2,32 2,06
Пеня за простой судна в порту, ден.ед./сут. () 100,00 100,00 100,00
Затраты по обслуживанию причала в сутки, ден.ед./сут. () 150,00 150,00 150,00
Суммарная пеня за простой судов в порту в сутки, ден.ед. () 192,86 23,68 4,48
Суммарные затраты по обслуживанию причалов в сутки, ден.ед. () 300,00 450,00 600,00
Суммарные затраты, ден.ед.(С) 492,86 473,68 604,48

Варианты заданий

Таблица 2 - Варианты заданий

Номер варианта
Задача
Номер варианта
Задача

1. В парикмахерской в зависимости от сложности стрижки, мастер выполняет работу в среднем за 30 мин. Посетители приходят в среднем через 25 мин. За каждый час работы мастер зарабатывает 300 ден.ед.. Очередь ограничена до 4 человек. Если в очереди больше 4 человек, клиент уходит, и потери за час составляют 150 ден.ед. Определить предельные вероятности состояний и характеристики обслуживания. Определить оптимальное количество мастеров.

2. Автомобили подъезжают на АЗС со средней частотой 2 автомобиля за 5 минут. Заправка автомобиля в среднем длится 3 минуты. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество колонок, чтобы средняя длина очереди не превышала 3 авт.

3. Рассматривается круглосуточная работа пункта проведения профилактического осмотра автомашин. На осмотр и выявление дефектов каждой машины затрачивается в среднем 30 минут. На осмотр поступает в среднем 36 машин в сутки. Если машина, прибывшая в пункт осмотра, не застает ни одного канала свободным, она покидает пункт осмотра не обслуженной. Определить вероятности состояний и характеристики обслуживания профилактического пункта осмотра. Определить количество каналов, чтобы относительная пропускная способность была не меньше 0,8.

4. В срочной мастерской по починке обуви в зависимости от сложности ремонта мастеру требуется в среднем 15 мин. Посетители приходят в среднем через каждые 14 мин. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество мастеров, чтобы средняя длина очереди не превышала 5 заказов.

5. В справочной оператор дает справку в среднем за 4 мин. Звонки поступают каждые 3мин. Если операторы заняты, то звонок не обслуживается. Определить вероятности состояний и характеристики обслуживания справочной. Определить количество каналов, чтобы относительная пропускная способность была не меньше 0,75.

6. В зависимости от количества продуктов у покупателя кассиру в магазине требуется в среднем на один чек 2 мин. Покупатели подходят к кассе с интенсивностью 81 человек/час. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество кассиров, чтобы средняя длина очереди не превышала 4 покупателей.

7. Диспетчеру в АТП в зависимости от типа автомобиля требуется в среднем на выдачу одного маршрутного листа 20 минут. Заявки на автомобили поступают в среднем через каждые 30 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество диспетчеров, чтобы средняя длина очереди не превышала 2 заявок.

8. Требуется оценить работу АТС. Если все линий связи заняты, то абонент выбывает из системы. Звонки поступают с интенсивностью 2 вызов/мин.. Продолжительность разговоров распределена экспоненциально, и в среднем равна 1,5 мин. Определить предельные вероятности и показатели эффективности системы. Определить количество операторов, чтобы относительная пропускная способность АТС была не меньше 0,9.

9. В банке в зависимости от сложности запроса клиента кассиру требуется в среднем 10 минут. Клиенты подходят к нему в среднем через каждые 12 минут. Кассир зарабатывает 15000 ден.ед. за месяц. Очередь ограничена до 6 человек. Если в очереди больше 6 человек, клиент уходит, и потери за час составляют 200 ден.ед. Определить предельные вероятности состояний и характеристики обслуживания. Определить оптимальное количество кассиров.

10. В среднем на одну транзакцию у банкомата уходит 2 минуты. Клиенты подходят к нему в среднем через каждые 20 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество банкоматов, чтобы средняя длина очереди не превышала 2 человек.

11. В магазине продавцу в зависимости от покупателя требуется в среднем на одну покупку 10 мин. Покупатели подходят к нему в среднем через каждые 5 мин. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество продавцов, чтобы средняя длина очереди не превышала 5 человек.

12. В отделе заказов мебельной фабрики менеджеру по продажам в зависимости от заказа клиента требуется в среднем на оформление одного заказа 25 минут. Клиенты приходят в среднем через каждые 30 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество менеджеров, чтобы средняя длина очереди не превышала 3 человек.

Порядок выполнения работы

1.Рассчитайте в системе Excel показатели системы массового обслуживания по формулам, приведенным в методичке. Количество каналов обслуживания n=1, 2, 3...k перебирается для нахождения оптимального значения по варианту. Предполагается, что входные потоки и обслуживание соответствуют пуассоновскому распределению.

2.Проведите анализ полученных результатов.

3.Составьте отчет.

1) Цель работы;

2) постановка задачи;

3) результаты расчетов, проведенных в Excel;

4) выводы по выполнению работы.

Контрольные вопросы

1. Что включает в себя понятие система массового обслуживания?

2. Какие существуют виды систем массового обслуживания?

3. Что относится к основным характеристикам и показателям эффективности систем массового обслуживания?

4. Укажите основные свойства (характеристики) входящего потока требований?

5. Перечислите основные особенности и характеристики систем массового обслуживания с ожиданием?

6. Каковы основные характеристики СМО с отказами?

7. Приведите примеры различных видов СМО?

Библиографический список

1. Афанасьев М.Ю. Исследование операций в экономике: модели, задачи, решения. / М.Ю. Афанасьев, Б.П. Суворов.- М.:ИНФРА, 2003.-444с.

2. Вентцель Е.С. Исследование операций. Задачи, приниципы, методология./ Е.С. Вентцель.-М.: Высшая школа, 2001.-208с.

3. Зайченко Ю.П. Исследование операций./ Ю.П. Зайченко.- К.: Вища школа, 1975.-320с.

4. Конюховский П.В. Математические методы исследования операций. / П.В. Конюховский.- СПб.: Питер, 2001.-192с.

5. Кремер Н.Ш., Путко Б.А. Исследование операций в экономике./ Н.Ш. Кремер, Б.А. Бутко, И.М. Тришин.- М.:Банки и биржи, ЮНИТИ, 1997.-407с.

1. Кудрявцев Е.М. GPSS World.Основы имитационного моделирования различных систем.- М.: ДМК Пресс, 2004.- 320 с.

2. Советов В.Я., Яковлев С.А. Моделирование систем. - М.: Высшая школа, 1985

3. Советов В.Я., Яковлев С.А. Моделирование систем: курсовое проектирование. - М.: Высшая школа, 1989

На практике довольно часто встречаются одноканальные СМО с очередью (врач, обслуживающий пациентов; телефон-автомат с одной будкой; ЭВМ, выполняющая заказы пользователей). В теории массового обслуживания одноканальные СМО с очередью также занимают особое место (именно к таким СМО относится большинство полученных до сих пор аналитических формул для немарковских систем). Поэтому мы уделим одноканальной СМО с очередью особое внимание.

Пусть имеется одноканальная СМО с очередью, на которую не наложено никаких ограничений (ни по длине очереди, ни по времени ожидания). На эту СМО поступает поток заявок с интенсивностью λ; поток обслуживаний имеет интенсивность μ, обратную среднему времени обслуживания заявки tоб. Требуется найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

Lсист - среднее число заявок в системе,

Wсист - среднее время пребывания заявки в системе,

Lоч - среднее число заявок в очереди,

Woч - среднее время пребывания заявки в очереди,

Рзан - вероятность того, что канал занят (степень загрузки канала).

Что касается абсолютной пропускной способности А и относительной Q, то вычислять их нет надобности: в силу того, что очередь неограниченна, каждая заявка рано или поздно будет обслужена, поэтому А=λ, по той же причине Q = 1.

Решение. Состояния системы, как и раньше, будем нумеровать по числу заявок, находящихся в СМО:

S0 - канал свободен,

S1 - канал занят (обслуживает заявку), очереди нет,

S2 - канал занят, одна заявка стоит в очереди,

Sk - канал занят, k - 1 заявок стоят в очереди.

Теоретически число состояний ничем не ограничено (бесконечно). Граф состояний имеет вид, показанный на рис. 4.11. Это - схема гибели и размножения, но с бесконечным числом состояний. По всем стрелкам поток заявок с интенсивностью λ переводит систему слева направо, а справа налево - поток обслуживаний с интенсивностью μ.

Рис. 4.11. Граф состояний СМО в виде схемы гибели и размножения с бесконечным числом состояний

Прежде всего, спросим себя, а существуют ли в этом случае финальные вероятности? Ведь число состояний системы бесконечно, и, в принципе, при t→∞ очередь может неограниченно возрастать! Да, так оно и есть: финальные вероятности для такой СМО существуют не всегда, а только когда система не перегружена. Можно доказать, что если р строго меньше единицы (р<1), то финальные вероятности существуют, а при р ≥ 1 очередь при t →∞ растет неограниченно. Особенно «непонятным» кажется этот факт при р = 1. Казалось бы, к системе не предъявляется невыполнимых требований: за время обслуживания одной заявки приходит в среднем одна заявка, и все должно быть в порядке, а вот на деле - не так. При р = 1 СМО справляется с потоком заявок, только если поток этот - регулярен, и время обслуживания - тоже не случайное, равное интервалу между заявками. В этом «идеальном» случае очереди в СМО вообще не будет, канал будет непрерывно занят и будет регулярно выпускать обслуженные заявки. Но стоит только потоку заявок или потоку обслуживаний стать хотя бы немного случайными - и очередь уже будет расти до бесконечности. На практике этого не происходит только потому, что «бесконечное число заявок в очереди» - абстракция. Вот к каким грубым ошибкам может привести замена случайных величин их математическими ожиданиями!

Но вернемся к нашей одноканальной СМО с неограниченной очередью. Строго говоря, формулы для финальных вероятностей в схеме гибели и размножения выводились нами только для случая конечного числа состояний, но воспользуемся ими и для бесконечного числа состояний. Подсчитаем финальные вероятности состояний по формулам (4.21), (4.20). В нашем случае число слагаемых в формуле (4.21) будет бесконечным. Получим выражение для р0:

откуда

Вероятности р1, р2, ..., рk, ... найдутся по формулам:

откуда, с учетом (4.38), найдем окончательно:

p 1 = ρ(1 - ρ), = ρ2(1- ρ), . . ., pk = ρ4(1- ρ), . . . (4.39)

Как видно, вероятности р0, р1, ..., pk, ... образуют геометрическую прогрессию со знаменателем р. Как это ни странно, максимальная из них р0 - вероятность того, что канал будет вообще свободен. Как бы ни была нагружена система с очередью, если только она вообще справляется с потоком заявок (р <1), самое вероятное число заявок в системе будет 0.

Найдем среднее число заявок в СМО Lсист. Случайная величина Z - число заявок в системе - имеет возможные значения 0, 1, 2, ..., k, ... с вероятностями р0, р1, p2, ..., рk, ... Ее математическое ожидание равно

(сумма берется не от 0 до ∞, а от 1 до ∞, так как нулевой член равен нулю).

Подставим в формулу (4.40) выражение для рk (4.39):

Теперь вынесем за знак суммы р (1 - р):

Тут мы опять применим «маленькую хитрость»: kpk-1 есть не что иное, как производная по р от выражения рk; значит,

Меняя местами операции дифференцирования и суммирования, получим:

Ну, а теперь применим формулу Литтла (4.25) и найдем среднее время пребывания заявки в системе:

Найдем среднее число заявок в очереди Lоч. Будем рассуждать так: число заявок в очереди равно числу заявок в системе минус число заявок, находящихся под обслуживанием. Значит (по правилу сложения математических ожиданий), среднее число заявок в очереди Lоч равно среднему числу заявок в системе Lсист минус среднее число заявок под обслуживанием. Число заявок под обслуживанием может быть либо нулем (если канал свободен), либо единицей (если он занят). Математическое ожидание такой случайной величины равно вероятности того, что канал занят (мы ее обозначили Рзан). Очевидно, Рзан равно единице минус вероятность р0 того, что канал свободен:

и окончательно

Таким образом, все характеристики эффективности СМО найдены.

Предложим читателю самостоятельно решить пример: одноканальная СМО представляет собой железнодорожную сортировочную станцию, на которую поступает простейший поток составов с интенсивностью λ = 2 (состава в час). Обслуживание (расформирование) состава длится случайное (показательное) время со средним значением tоб = 20 (мин.). В парке прибытия станции имеются два пути, на которых могут ожидать обслуживания прибывающие составы; если оба пути заняты, составы вынуждены ждать на внешних путях. Требуется найти (для предельного, стационарного режима работы станции): среднее число составов Lсист, связанных со станцией, среднее время Wсист пребывания состава при станции (на внутренних путях, на внешних путях и под обслуживанием), среднее число Lоч составов, ожидающих очереди на расформирование (все равно, на каких путях), среднее время Wоч пребывания состава на очереди. Кроме того, попытайтесь найти среднее число составов, ожидающих расформирования на внешних путях Lвнеш и среднее время этого ожидания Wвнеш (две последние величины связаны формулой Литтла). Наконец, найдите суммарный суточный штраф Ш, который придется заплатить станции за простои составов на внешних путях, если за один час простоя одного состава станция платит штраф а (руб.). На всякий случай сообщаем ответы: Lcист = 2 (состава), Wсист = i (час), Lоч = 4/3 (состава), Wоч = 2/3 (часа), Lвнеш = 16/27 (состава), Wвнеш = 8/27 ≈ 0,297 (часа). Средний суточный штраф Ш за ожидание составов на внешних путях получим, перемножая среднее число составов, прибывающих на станцию за сутки, среднее время ожидания состава на внешних путях и часовой штраф а: Ш ≈ 14,2а.

Назначение сервиса СМО . Онлайн-калькулятор предназначен для расчета следующих показателей одноканальных СМО:
  • вероятность отказа канала, вероятность свободного канала, абсолютная пропускная способность;
  • относительная пропускная способность, среднее время обслуживания, среднее время простоя канала.

Инструкция . Для решения подобных задач в онлайн режиме выберите модель СМО. Укажите интенсивность потока заявок λ и интенсивность потока обслуживания μ . Для одноканальной СМО с ограниченной длиной очереди можно указать длину очереди m , а для одноканальной СМО с неограниченной очередью - число заявок в очереди (для расчета вероятности нахождения этих заявок в очереди). см. пример решения . . Полученное решение сохраняется в файле Word .

Классификация одноканальных систем массового обслуживания

Пример №1 . Авто заправочная станция имеет одну бензоколонку. Предполагается что простейший поток автомашин поступает на станцию с интенсивностью λ=11 автомашин/ч. Время обслуживания заявки случайная величина которая подчиняется экспоненциальному закону с параметром μ=14 автомашин/ч. Определить среднее число автомашин на станции.

Пример №2 . Имеется пункт проведения профилактического осмотра машин с одной группой проведения осмотра. На осмотр и выявление дефектов каждой машины затрачивается в среднем 0,4 часа. На осмотр поступает в среднем 328 машин в сутки. Потоки заявок и обслуживаний - простейшие. Если машина, прибывшая в пункт осмотра не застает ни одного канала свободным, она покидает пункт осмотра необслуженной. Определить предельные вероятности состояний и характеристики обслуживания пункта профилактического осмотра.
Решение. Здесь α = 328/24 ≈ = 13.67, t = 0.4. Эти данные необходимо ввести в калькулятор.